加入星計劃,您可以享受以下權益:

  • 創(chuàng)作內容快速變現
  • 行業(yè)影響力擴散
  • 作品版權保護
  • 300W+ 專業(yè)用戶
  • 1.5W+ 優(yōu)質創(chuàng)作者
  • 5000+ 長期合作伙伴
立即加入
  • 正文
    • 賽題背景
    • 全代碼
  • 推薦器件
  • 相關推薦
  • 電子產業(yè)圖譜
申請入駐 產業(yè)圖譜

阿里云天池大賽賽題(機器學習)——工業(yè)蒸汽量預測(完整代碼)

04/29 16:56
2825
加入交流群
掃碼加入
獲取工程師必備禮包
參與熱點資訊討論

賽題背景

火力發(fā)電就是燃料燃燒加熱水生成蒸汽,蒸汽產生的壓力推動汽輪機旋轉,進而帶動電機旋轉,產生電能。其中一系列的能量轉化中,影響發(fā)電效率的核心是鍋爐的燃燒效率,即加熱水產生的蒸汽量。而影響鍋爐燃燒效率的因素很多,包括鍋爐床溫、床壓、爐膛溫度、壓力等等。

這個賽題的目標就是給一堆鍋爐傳感器采集的數據(38個特征變量),然后用訓練好的模型預測出蒸汽量。因為預測值為連續(xù)型數值變量,且給定的數據都帶有標簽,故此問題是典型的回歸預測問題

典型的回歸預測模型使用的算法包括:線性回歸,嶺回歸,LASSO回歸決策樹回歸,梯度提升樹回歸

全代碼

一個典型的機器學習實戰(zhàn)算法基本包括 1) 數據處理,2) 特征選取、優(yōu)化,和 3) 模型選取、驗證、優(yōu)化。 因為 “數據和特征決定了機器學習的上限,而模型和算法知識逼近這個上限而已?!?/strong> 所以在解決一個機器學習問題時大部分時間都會花在數據處理和特征優(yōu)化上。
大家最好在jupyter notebook上一段一段地跑下面的代碼,加深理解。
機器學習的基本知識可以康康我的其他文章哦 好康的。

導入包

import warnings
warnings.filterwarnings("ignore")
import matplotlib.pyplot as plt
plt.rcParams.update({'figure.max_open_warning': 0})
import seaborn as sns

# modelling
import pandas as pd
import numpy as np
from scipy import stats
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV, RepeatedKFold, cross_val_score,cross_val_predict,KFold
from sklearn.metrics import make_scorer,mean_squared_error
from sklearn.linear_model import LinearRegression, Lasso, Ridge, ElasticNet
from sklearn.svm import LinearSVR, SVR
from sklearn.neighbors import KNeighborsRegressor
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor,AdaBoostRegressor
from xgboost import XGBRegressor
from sklearn.preprocessing import PolynomialFeatures,MinMaxScaler,StandardScaler

導入數據

#load_dataset
with open("./zhengqi_train.txt")  as fr:
    data_train=pd.read_table(fr,sep="t")
with open("./zhengqi_test.txt") as fr_test:
    data_test=pd.read_table(fr_test,sep="t")

合并數據

#merge train_set and test_set
data_train["oringin"]="train"
data_test["oringin"]="test"
data_all=pd.concat([data_train,data_test],axis=0,ignore_index=True)

刪除相關特征

data_all.drop(["V5","V9","V11","V17","V22","V28"],axis=1,inplace=True)

數據最大最小歸一化

# normalise numeric columns
cols_numeric=list(data_all.columns)
cols_numeric.remove("oringin")
def scale_minmax(col):
    return (col-col.min())/(col.max()-col.min())
scale_cols = [col for col in cols_numeric if col!='target']
data_all[scale_cols] = data_all[scale_cols].apply(scale_minmax,axis=0)

畫圖:探查特征和標簽相關信息

#Check effect of Box-Cox transforms on distributions of continuous variables

fcols = 6
frows = len(cols_numeric)-1
plt.figure(figsize=(4*fcols,4*frows))
i=0

for var in cols_numeric:
    if var!='target':
        dat = data_all[[var, 'target']].dropna()
        
        i+=1
        plt.subplot(frows,fcols,i)
        sns.distplot(dat[var] , fit=stats.norm);
        plt.title(var+' Original')
        plt.xlabel('')
        
        i+=1
        plt.subplot(frows,fcols,i)
        _=stats.probplot(dat[var], plot=plt)
        plt.title('skew='+'{:.4f}'.format(stats.skew(dat[var])))
        plt.xlabel('')
        plt.ylabel('')
        
        i+=1
        plt.subplot(frows,fcols,i)
        plt.plot(dat[var], dat['target'],'.',alpha=0.5)
        plt.title('corr='+'{:.2f}'.format(np.corrcoef(dat[var], dat['target'])[0][1]))
 
        i+=1
        plt.subplot(frows,fcols,i)
        trans_var, lambda_var = stats.boxcox(dat[var].dropna()+1)
        trans_var = scale_minmax(trans_var)      
        sns.distplot(trans_var , fit=stats.norm);
        plt.title(var+' Tramsformed')
        plt.xlabel('')
        
        i+=1
        plt.subplot(frows,fcols,i)
        _=stats.probplot(trans_var, plot=plt)
        plt.title('skew='+'{:.4f}'.format(stats.skew(trans_var)))
        plt.xlabel('')
        plt.ylabel('')
        
        i+=1
        plt.subplot(frows,fcols,i)
        plt.plot(trans_var, dat['target'],'.',alpha=0.5)
        plt.title('corr='+'{:.2f}'.format(np.corrcoef(trans_var,dat['target'])[0][1]))

在這里插入圖片描述

對特征進行Box-Cox變換,使其滿足正態(tài)性

Box-Cox變換是Box和Cox在1964年提出的一種廣義冪變換方法,是統(tǒng)計建模中常用的一種數據變換,用于連續(xù)的響應變量不滿足正態(tài)分布的情況。Box-Cox變換之后,可以一定程度上減小不可觀測的誤差和預測變量的相關性。Box-Cox變換的主要特點是引入一個參數,通過數據本身估計該參數進而確定應采取的數據變換形式,Box-Cox變換可以明顯地改善數據的正態(tài)性、對稱性和方差相等性,對許多實際數據都是行之有效的。

cols_transform=data_all.columns[0:-2]
for col in cols_transform:   
    # transform column
    data_all.loc[:,col], _ = stats.boxcox(data_all.loc[:,col]+1)

標簽數據統(tǒng)計轉換后的數據,計算分位數畫圖展示(基于正態(tài)分布)

print(data_all.target.describe())

plt.figure(figsize=(12,4))
plt.subplot(1,2,1)
sns.distplot(data_all.target.dropna() , fit=stats.norm);
plt.subplot(1,2,2)
_=stats.probplot(data_all.target.dropna(), plot=plt)

在這里插入圖片描述

標簽數據對數變換數據,使數據更符合正態(tài),并畫圖展示

#Log Transform SalePrice to improve normality
sp = data_train.target
data_train.target1 =np.power(1.5,sp)
print(data_train.target1.describe())

plt.figure(figsize=(12,4))
plt.subplot(1,2,1)
sns.distplot(data_train.target1.dropna(),fit=stats.norm);
plt.subplot(1,2,2)
_=stats.probplot(data_train.target1.dropna(), plot=plt)

在這里插入圖片描述

獲取訓練和測試數據

# function to get training samples
def get_training_data():
    # extract training samples
    from sklearn.model_selection import train_test_split
    df_train = data_all[data_all["oringin"]=="train"]
    df_train["label"]=data_train.target1
    # split SalePrice and features
    y = df_train.target
    X = df_train.drop(["oringin","target","label"],axis=1)
    X_train,X_valid,y_train,y_valid=train_test_split(X,y,test_size=0.3,random_state=100)
    return X_train,X_valid,y_train,y_valid

# extract test data (without SalePrice)
def get_test_data():
    df_test = data_all[data_all["oringin"]=="test"].reset_index(drop=True)
    return df_test.drop(["oringin","target"],axis=1)

評分函數

from sklearn.metrics import make_scorer
# metric for evaluation
def rmse(y_true, y_pred):
    diff = y_pred - y_true
    sum_sq = sum(diff**2)    
    n = len(y_pred)   
    
    return np.sqrt(sum_sq/n)
def mse(y_ture,y_pred):
    return mean_squared_error(y_ture,y_pred)

# scorer to be used in sklearn model fitting
rmse_scorer = make_scorer(rmse, greater_is_better=False)
mse_scorer = make_scorer(mse, greater_is_better=False)

獲取異常數據,并畫圖

# function to detect outliers based on the predictions of a model
def find_outliers(model, X, y, sigma=3):

    # predict y values using model
    try:
        y_pred = pd.Series(model.predict(X), index=y.index)
    # if predicting fails, try fitting the model first
    except:
        model.fit(X,y)
        y_pred = pd.Series(model.predict(X), index=y.index)
        
    # calculate residuals between the model prediction and true y values
    resid = y - y_pred
    mean_resid = resid.mean()
    std_resid = resid.std()

    # calculate z statistic, define outliers to be where |z|>sigma
    z = (resid - mean_resid)/std_resid    
    outliers = z[abs(z)>sigma].index
    
    # print and plot the results
    print('R2=',model.score(X,y))
    print('rmse=',rmse(y, y_pred))
    print("mse=",mean_squared_error(y,y_pred))
    print('---------------------------------------')

    print('mean of residuals:',mean_resid)
    print('std of residuals:',std_resid)
    print('---------------------------------------')

    print(len(outliers),'outliers:')
    print(outliers.tolist())

    plt.figure(figsize=(15,5))
    ax_131 = plt.subplot(1,3,1)
    plt.plot(y,y_pred,'.')
    plt.plot(y.loc[outliers],y_pred.loc[outliers],'ro')
    plt.legend(['Accepted','Outlier'])
    plt.xlabel('y')
    plt.ylabel('y_pred');

    ax_132=plt.subplot(1,3,2)
    plt.plot(y,y-y_pred,'.')
    plt.plot(y.loc[outliers],y.loc[outliers]-y_pred.loc[outliers],'ro')
    plt.legend(['Accepted','Outlier'])
    plt.xlabel('y')
    plt.ylabel('y - y_pred');

    ax_133=plt.subplot(1,3,3)
    z.plot.hist(bins=50,ax=ax_133)
    z.loc[outliers].plot.hist(color='r',bins=50,ax=ax_133)
    plt.legend(['Accepted','Outlier'])
    plt.xlabel('z')
    
    plt.savefig('outliers.png')
    
    return outliers
# get training data
from sklearn.linear_model import Ridge
X_train, X_valid,y_train,y_valid = get_training_data()
test=get_test_data()

# find and remove outliers using a Ridge model
outliers = find_outliers(Ridge(), X_train, y_train)

# permanently remove these outliers from the data
#df_train = data_all[data_all["oringin"]=="train"]
#df_train["label"]=data_train.target1
#df_train=df_train.drop(outliers)
X_outliers=X_train.loc[outliers]
y_outliers=y_train.loc[outliers]
X_t=X_train.drop(outliers)
y_t=y_train.drop(outliers)

在這里插入圖片描述

使用刪除異常的數據進行模型訓練

def get_trainning_data_omitoutliers():
    y1=y_t.copy()
    X1=X_t.copy()
    return X1,y1

采用網格搜索訓練模型

from sklearn.preprocessing import StandardScaler
def train_model(model, param_grid=[], X=[], y=[], 
                splits=5, repeats=5):

    # get unmodified training data, unless data to use already specified
    if len(y)==0:
        X,y = get_trainning_data_omitoutliers()
        #poly_trans=PolynomialFeatures(degree=2)
        #X=poly_trans.fit_transform(X)
        #X=MinMaxScaler().fit_transform(X)
    
    # create cross-validation method
    rkfold = RepeatedKFold(n_splits=splits, n_repeats=repeats)
    
    # perform a grid search if param_grid given
    if len(param_grid)>0:
        # setup grid search parameters
        gsearch = GridSearchCV(model, param_grid, cv=rkfold,
                               scoring="neg_mean_squared_error",
                               verbose=1, return_train_score=True)

        # search the grid
        gsearch.fit(X,y)

        # extract best model from the grid
        model = gsearch.best_estimator_        
        best_idx = gsearch.best_index_

        # get cv-scores for best model
        grid_results = pd.DataFrame(gsearch.cv_results_)       
        cv_mean = abs(grid_results.loc[best_idx,'mean_test_score'])
        cv_std = grid_results.loc[best_idx,'std_test_score']

    # no grid search, just cross-val score for given model    
    else:
        grid_results = []
        cv_results = cross_val_score(model, X, y, scoring="neg_mean_squared_error", cv=rkfold)
        cv_mean = abs(np.mean(cv_results))
        cv_std = np.std(cv_results)
    
    # combine mean and std cv-score in to a pandas series
    cv_score = pd.Series({'mean':cv_mean,'std':cv_std})

    # predict y using the fitted model
    y_pred = model.predict(X)
    
    # print stats on model performance         
    print('----------------------')
    print(model)
    print('----------------------')
    print('score=',model.score(X,y))
    print('rmse=',rmse(y, y_pred))
    print('mse=',mse(y, y_pred))
    print('cross_val: mean=',cv_mean,', std=',cv_std)
    
    # residual plots
    y_pred = pd.Series(y_pred,index=y.index)
    resid = y - y_pred
    mean_resid = resid.mean()
    std_resid = resid.std()
    z = (resid - mean_resid)/std_resid    
    n_outliers = sum(abs(z)>3)
    
    plt.figure(figsize=(15,5))
    ax_131 = plt.subplot(1,3,1)
    plt.plot(y,y_pred,'.')
    plt.xlabel('y')
    plt.ylabel('y_pred');
    plt.title('corr = {:.3f}'.format(np.corrcoef(y,y_pred)[0][1]))
    ax_132=plt.subplot(1,3,2)
    plt.plot(y,y-y_pred,'.')
    plt.xlabel('y')
    plt.ylabel('y - y_pred');
    plt.title('std resid = {:.3f}'.format(std_resid))
    
    ax_133=plt.subplot(1,3,3)
    z.plot.hist(bins=50,ax=ax_133)
    plt.xlabel('z')
    plt.title('{:.0f} samples with z>3'.format(n_outliers))

    return model, cv_score, grid_results
# places to store optimal models and scores
opt_models = dict()
score_models = pd.DataFrame(columns=['mean','std'])

# no. k-fold splits
splits=5
# no. k-fold iterations
repeats=5

嶺回歸

model = 'Ridge'

opt_models[model] = Ridge()
alph_range = np.arange(0.25,6,0.25)
param_grid = {'alpha': alph_range}

opt_models[model],cv_score,grid_results = train_model(opt_models[model], param_grid=param_grid, 
                                              splits=splits, repeats=repeats)

cv_score.name = model
score_models = score_models.append(cv_score)

plt.figure()
plt.errorbar(alph_range, abs(grid_results['mean_test_score']),
             abs(grid_results['std_test_score'])/np.sqrt(splits*repeats))
plt.xlabel('alpha')
plt.ylabel('score')

在這里插入圖片描述

Lasso回歸

model = 'Lasso'

opt_models[model] = Lasso()
alph_range = np.arange(1e-4,1e-3,4e-5)
param_grid = {'alpha': alph_range}

opt_models[model], cv_score, grid_results = train_model(opt_models[model], param_grid=param_grid, 
                                              splits=splits, repeats=repeats)

cv_score.name = model
score_models = score_models.append(cv_score)

plt.figure()
plt.errorbar(alph_range, abs(grid_results['mean_test_score']),abs(grid_results['std_test_score'])/np.sqrt(splits*repeats))
plt.xlabel('alpha')
plt.ylabel('score')

在這里插入圖片描述

ElasticNet 回歸

model ='ElasticNet'
opt_models[model] = ElasticNet()

param_grid = {'alpha': np.arange(1e-4,1e-3,1e-4),
              'l1_ratio': np.arange(0.1,1.0,0.1),
              'max_iter':[100000]}

opt_models[model], cv_score, grid_results = train_model(opt_models[model], param_grid=param_grid, 
                                              splits=splits, repeats=1)

cv_score.name = model
score_models = score_models.append(cv_score)

在這里插入圖片描述

SVR回歸

model='LinearSVR'
opt_models[model] = LinearSVR()

crange = np.arange(0.1,1.0,0.1)
param_grid = {'C':crange,
             'max_iter':[1000]}

opt_models[model], cv_score, grid_results = train_model(opt_models[model], param_grid=param_grid, 
                                              splits=splits, repeats=repeats)


cv_score.name = model
score_models = score_models.append(cv_score)

plt.figure()
plt.errorbar(crange, abs(grid_results['mean_test_score']),abs(grid_results['std_test_score'])/np.sqrt(splits*repeats))
plt.xlabel('C')
plt.ylabel('score')

在這里插入圖片描述

K近鄰

model = 'KNeighbors'
opt_models[model] = KNeighborsRegressor()

param_grid = {'n_neighbors':np.arange(3,11,1)}

opt_models[model], cv_score, grid_results = train_model(opt_models[model], param_grid=param_grid, 
                                              splits=splits, repeats=1)

cv_score.name = model
score_models = score_models.append(cv_score)

plt.figure()
plt.errorbar(np.arange(3,11,1), abs(grid_results['mean_test_score']),abs(grid_results['std_test_score'])/np.sqrt(splits*1))
plt.xlabel('n_neighbors')
plt.ylabel('score')

在這里插入圖片描述

GBDT 模型

model = 'GradientBoosting'
opt_models[model] = GradientBoostingRegressor()

param_grid = {'n_estimators':[150,250,350],
              'max_depth':[1,2,3],
              'min_samples_split':[5,6,7]}

opt_models[model], cv_score, grid_results = train_model(opt_models[model], param_grid=param_grid, 
                                              splits=splits, repeats=1)

cv_score.name = model
score_models = score_models.append(cv_score)

在這里插入圖片描述

XGB模型

model = 'XGB'
opt_models[model] = XGBRegressor()

param_grid = {'n_estimators':[100,200,300,400,500],
              'max_depth':[1,2,3],
             }

opt_models[model], cv_score,grid_results = train_model(opt_models[model], param_grid=param_grid, 
                                              splits=splits, repeats=1)

cv_score.name = model
score_models = score_models.append(cv_score)

在這里插入圖片描述

隨機森林模型

model = 'RandomForest'
opt_models[model] = RandomForestRegressor()

param_grid = {'n_estimators':[100,150,200],
              'max_features':[8,12,16,20,24],
              'min_samples_split':[2,4,6]}

opt_models[model], cv_score, grid_results = train_model(opt_models[model], param_grid=param_grid, 
                                              splits=5, repeats=1)

cv_score.name = model
score_models = score_models.append(cv_score)

在這里插入圖片描述

模型預測–多模型Bagging

def model_predict(test_data,test_y=[],stack=False):
    #poly_trans=PolynomialFeatures(degree=2)
    #test_data1=poly_trans.fit_transform(test_data)
    #test_data=MinMaxScaler().fit_transform(test_data)
    i=0
    y_predict_total=np.zeros((test_data.shape[0],))
    for model in opt_models.keys():
        if model!="LinearSVR" and model!="KNeighbors":
            y_predict=opt_models[model].predict(test_data)
            y_predict_total+=y_predict
            i+=1
        if len(test_y)>0:
            print("{}_mse:".format(model),mean_squared_error(y_predict,test_y))
    y_predict_mean=np.round(y_predict_total/i,3)
    if len(test_y)>0:
        print("mean_mse:",mean_squared_error(y_predict_mean,test_y))
    else:
        y_predict_mean=pd.Series(y_predict_mean)
        return y_predict_mean

Bagging預測

model_predict(X_valid,y_valid)

在這里插入圖片描述

模型融合Stacking

模型融合,即先產生一組個體模型,再用某種策略將它們結合起來,以加強模型效果。
分析表明,隨著集成中個體模型數量T增加,集成模型的錯誤率將呈指數級下降,最終趨于0。通過融合可以達到取長補短的效果,綜合個體模型的優(yōu)勢能降低預測誤差、優(yōu)化整體模型的性能。而且個體模型的準確率越高,多樣性越大,模型融合的提升效果就越好!

模型融合stacking簡單示例

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import itertools
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier

##主要使用pip install mlxtend安裝mlxtend
from mlxtend.classifier import EnsembleVoteClassifier
from mlxtend.data import iris_data
from mlxtend.plotting import plot_decision_regions
%matplotlib inline

# Initializing Classifiers
clf1 = LogisticRegression(random_state=0)
clf2 = RandomForestClassifier(random_state=0)
clf3 = SVC(random_state=0, probability=True)
eclf = EnsembleVoteClassifier(clfs=[clf1, clf2, clf3], weights=[2, 1, 1], voting='soft')

# Loading some example data
X, y = iris_data()
X = X[:,[0, 2]]

# Plotting Decision Regions
gs = gridspec.GridSpec(2, 2)
fig = plt.figure(figsize=(10, 8))

for clf, lab, grd in zip([clf1, clf2, clf3, eclf],
                         ['Logistic Regression', 'Random Forest', 'RBF kernel SVM', 'Ensemble'],
                         itertools.product([0, 1], repeat=2)):
    clf.fit(X, y)
    ax = plt.subplot(gs[grd[0], grd[1]])
    fig = plot_decision_regions(X=X, y=y, clf=clf, legend=2)
    plt.title(lab)
plt.show()

在這里插入圖片描述

工業(yè)蒸汽多模型融合stacking

from sklearn.model_selection import train_test_split
import pandas as pd
import numpy as np
from scipy import sparse
import xgboost
import lightgbm

from sklearn.ensemble import RandomForestRegressor,AdaBoostRegressor,GradientBoostingRegressor,ExtraTreesRegressor
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

def stacking_reg(clf,train_x,train_y,test_x,clf_name,kf,label_split=None):
    train=np.zeros((train_x.shape[0],1))
    test=np.zeros((test_x.shape[0],1))
    test_pre=np.empty((folds,test_x.shape[0],1))
    cv_scores=[]
    for i,(train_index,test_index) in enumerate(kf.split(train_x,label_split)):       
        tr_x=train_x[train_index]
        tr_y=train_y[train_index]
        te_x=train_x[test_index]
        te_y = train_y[test_index]
        if clf_name in ["rf","ada","gb","et","lr","lsvc","knn"]:
            clf.fit(tr_x,tr_y)
            pre=clf.predict(te_x).reshape(-1,1)
            train[test_index]=pre
            test_pre[i,:]=clf.predict(test_x).reshape(-1,1)
            cv_scores.append(mean_squared_error(te_y, pre))
        elif clf_name in ["xgb"]:
            train_matrix = clf.DMatrix(tr_x, label=tr_y, missing=-1)
            test_matrix = clf.DMatrix(te_x, label=te_y, missing=-1)
            z = clf.DMatrix(test_x, label=te_y, missing=-1)
            params = {'booster': 'gbtree',
                      'eval_metric': 'rmse',
                      'gamma': 1,
                      'min_child_weight': 1.5,
                      'max_depth': 5,
                      'lambda': 10,
                      'subsample': 0.7,
                      'colsample_bytree': 0.7,
                      'colsample_bylevel': 0.7,
                      'eta': 0.03,
                      'tree_method': 'exact',
                      'seed': 2017,
                      'nthread': 12
                      }
            num_round = 10000
            early_stopping_rounds = 100
            watchlist = [(train_matrix, 'train'),
                         (test_matrix, 'eval')
                         ]
            if test_matrix:
                model = clf.train(params, train_matrix, num_boost_round=num_round,evals=watchlist,
                                  early_stopping_rounds=early_stopping_rounds
                                  )
                pre= model.predict(test_matrix,ntree_limit=model.best_ntree_limit).reshape(-1,1)
                train[test_index]=pre
                test_pre[i, :]= model.predict(z, ntree_limit=model.best_ntree_limit).reshape(-1,1)
                cv_scores.append(mean_squared_error(te_y, pre))

        elif clf_name in ["lgb"]:
            train_matrix = clf.Dataset(tr_x, label=tr_y)
            test_matrix = clf.Dataset(te_x, label=te_y)
            #z = clf.Dataset(test_x, label=te_y)
            #z=test_x
            params = {
                      'boosting_type': 'gbdt',
                      'objective': 'regression_l2',
                      'metric': 'mse',
                      'min_child_weight': 1.5,
                      'num_leaves': 2**5,
                      'lambda_l2': 10,
                      'subsample': 0.7,
                      'colsample_bytree': 0.7,
                      'colsample_bylevel': 0.7,
                      'learning_rate': 0.03,
                      'tree_method': 'exact',
                      'seed': 2017,
                      'nthread': 12,
                      'silent': True,
                      }
            num_round = 10000
            early_stopping_rounds = 100
            if test_matrix:
                model = clf.train(params, train_matrix,num_round,valid_sets=test_matrix,
                                  early_stopping_rounds=early_stopping_rounds
                                  )
                pre= model.predict(te_x,num_iteration=model.best_iteration).reshape(-1,1)
                train[test_index]=pre
                test_pre[i, :]= model.predict(test_x, num_iteration=model.best_iteration).reshape(-1,1)
                cv_scores.append(mean_squared_error(te_y, pre))
        else:
            raise IOError("Please add new clf.")
        print("%s now score is:"%clf_name,cv_scores)
    test[:]=test_pre.mean(axis=0)
    print("%s_score_list:"%clf_name,cv_scores)
    print("%s_score_mean:"%clf_name,np.mean(cv_scores))
    return train.reshape(-1,1),test.reshape(-1,1)


模型融合stacking基學習器


def rf_reg(x_train, y_train, x_valid, kf, label_split=None):
    randomforest = RandomForestRegressor(n_estimators=600, max_depth=20, n_jobs=-1, random_state=2017, max_features="auto",verbose=1)
    rf_train, rf_test = stacking_reg(randomforest, x_train, y_train, x_valid, "rf", kf, label_split=label_split)
    return rf_train, rf_test,"rf_reg"

def ada_reg(x_train, y_train, x_valid, kf, label_split=None):
    adaboost = AdaBoostRegressor(n_estimators=30, random_state=2017, learning_rate=0.01)
    ada_train, ada_test = stacking_reg(adaboost, x_train, y_train, x_valid, "ada", kf, label_split=label_split)
    return ada_train, ada_test,"ada_reg"

def gb_reg(x_train, y_train, x_valid, kf, label_split=None):
    gbdt = GradientBoostingRegressor(learning_rate=0.04, n_estimators=100, subsample=0.8, random_state=2017,max_depth=5,verbose=1)
    gbdt_train, gbdt_test = stacking_reg(gbdt, x_train, y_train, x_valid, "gb", kf, label_split=label_split)
    return gbdt_train, gbdt_test,"gb_reg"

def et_reg(x_train, y_train, x_valid, kf, label_split=None):
    extratree = ExtraTreesRegressor(n_estimators=600, max_depth=35, max_features="auto", n_jobs=-1, random_state=2017,verbose=1)
    et_train, et_test = stacking_reg(extratree, x_train, y_train, x_valid, "et", kf, label_split=label_split)
    return et_train, et_test,"et_reg"

def lr_reg(x_train, y_train, x_valid, kf, label_split=None):
    lr_reg=LinearRegression(n_jobs=-1)
    lr_train, lr_test = stacking_reg(lr_reg, x_train, y_train, x_valid, "lr", kf, label_split=label_split)
    return lr_train, lr_test, "lr_reg"

def xgb_reg(x_train, y_train, x_valid, kf, label_split=None):
    xgb_train, xgb_test = stacking_reg(xgboost, x_train, y_train, x_valid, "xgb", kf, label_split=label_split)
    return xgb_train, xgb_test,"xgb_reg"

def lgb_reg(x_train, y_train, x_valid, kf, label_split=None):
    lgb_train, lgb_test = stacking_reg(lightgbm, x_train, y_train, x_valid, "lgb", kf, label_split=label_split)
    return lgb_train, lgb_test,"lgb_reg"

模型融合stacking預測

def stacking_pred(x_train, y_train, x_valid, kf, clf_list, label_split=None, clf_fin="lgb", if_concat_origin=True):
    for k, clf_list in enumerate(clf_list):
        clf_list = [clf_list]
        column_list = []
        train_data_list=[]
        test_data_list=[]
        for clf in clf_list:
            train_data,test_data,clf_name=clf(x_train, y_train, x_valid, kf, label_split=label_split)
            train_data_list.append(train_data)
            test_data_list.append(test_data)
            column_list.append("clf_%s" % (clf_name))
    train = np.concatenate(train_data_list, axis=1)
    test = np.concatenate(test_data_list, axis=1)
    
    if if_concat_origin:
        train = np.concatenate([x_train, train], axis=1)
        test = np.concatenate([x_valid, test], axis=1)
    print(x_train.shape)
    print(train.shape)
    print(clf_name)
    print(clf_name in ["lgb"])
    if clf_fin in ["rf","ada","gb","et","lr","lsvc","knn"]:
        if clf_fin in ["rf"]:
            clf = RandomForestRegressor(n_estimators=600, max_depth=20, n_jobs=-1, random_state=2017, max_features="auto",verbose=1)
        elif clf_fin in ["ada"]:
            clf = AdaBoostRegressor(n_estimators=30, random_state=2017, learning_rate=0.01)
        elif clf_fin in ["gb"]:
            clf = GradientBoostingRegressor(learning_rate=0.04, n_estimators=100, subsample=0.8, random_state=2017,max_depth=5,verbose=1)
        elif clf_fin in ["et"]:
            clf = ExtraTreesRegressor(n_estimators=600, max_depth=35, max_features="auto", n_jobs=-1, random_state=2017,verbose=1)
        elif clf_fin in ["lr"]:
            clf = LinearRegression(n_jobs=-1)
        clf.fit(train, y_train)
        pre = clf.predict(test).reshape(-1,1)
        return pred
    elif clf_fin in ["xgb"]:
        clf = xgboost
        train_matrix = clf.DMatrix(train, label=y_train, missing=-1)
        test_matrix = clf.DMatrix(train, label=y_train, missing=-1)
        params = {'booster': 'gbtree',
                  'eval_metric': 'rmse',
                  'gamma': 1,
                  'min_child_weight': 1.5,
                  'max_depth': 5,
                  'lambda': 10,
                  'subsample': 0.7,
                  'colsample_bytree': 0.7,
                  'colsample_bylevel': 0.7,
                  'eta': 0.03,
                  'tree_method': 'exact',
                  'seed': 2017,
                  'nthread': 12
                  }
        num_round = 10000
        early_stopping_rounds = 100
        watchlist = [(train_matrix, 'train'),
                     (test_matrix, 'eval')
                     ]
        model = clf.train(params, train_matrix, num_boost_round=num_round,evals=watchlist,
                          early_stopping_rounds=early_stopping_rounds
                          )
        pre = model.predict(test,ntree_limit=model.best_ntree_limit).reshape(-1,1)
        return pre
    elif clf_fin in ["lgb"]:
        print(clf_name)
        clf = lightgbm
        train_matrix = clf.Dataset(train, label=y_train)
        test_matrix = clf.Dataset(train, label=y_train)
        params = {
                  'boosting_type': 'gbdt',
                  'objective': 'regression_l2',
                  'metric': 'mse',
                  'min_child_weight': 1.5,
                  'num_leaves': 2**5,
                  'lambda_l2': 10,
                  'subsample': 0.7,
                  'colsample_bytree': 0.7,
                  'colsample_bylevel': 0.7,
                  'learning_rate': 0.03,
                  'tree_method': 'exact',
                  'seed': 2017,
                  'nthread': 12,
                  'silent': True,
                  }
        num_round = 10000
        early_stopping_rounds = 100
        model = clf.train(params, train_matrix,num_round,valid_sets=test_matrix,
                          early_stopping_rounds=early_stopping_rounds
                          )
        print('pred')
        pre = model.predict(test,num_iteration=model.best_iteration).reshape(-1,1)
        print(pre)
        return pre

加載數據

# #load_dataset
with open("./zhengqi_train.txt")  as fr:
    data_train=pd.read_table(fr,sep="t")
with open("./zhengqi_test.txt") as fr_test:
    data_test=pd.read_table(fr_test,sep="t")

K折交叉驗證

from sklearn.model_selection import StratifiedKFold, KFold

folds = 5
seed = 1
kf = KFold(n_splits=5, shuffle=True, random_state=0)

訓練集和測試集數據

x_train = data_train[data_test.columns].values
x_valid = data_test[data_test.columns].values
y_train = data_train['target'].values

使用lr_reg和lgb_reg進行融合預測

clf_list = [lr_reg, lgb_reg]
#clf_list = [lr_reg, rf_reg]

##很容易過擬合
pred = stacking_pred(x_train, y_train, x_valid, kf, clf_list, label_split=None, clf_fin="lgb", if_concat_origin=True)

以上內容和代碼全部來自于《阿里云天池大賽賽題解析(機器學習篇)》這本好書,十分推薦大家去閱讀原書!

推薦器件

更多器件
器件型號 數量 器件廠商 器件描述 數據手冊 ECAD模型 風險等級 參考價格 更多信息
TJA1055T/1J 1 NXP Semiconductors TJA1055 - Enhanced fault-tolerant CAN transceiver SOIC 14-Pin
$1.72 查看
ECS-.327-12.5-34QS-TR 1 ECS International Inc Parallel - Fundamental Quartz Crystal, 0.032768MHz Nom, SMD, 2 PIN
$1.16 查看
ABS25-32.768KHZ-T 1 Abracon Corporation CRYSTAL 32.7680KHZ 12.5PF SMD

ECAD模型

下載ECAD模型
$1.17 查看

相關推薦

電子產業(yè)圖譜