加入星計(jì)劃,您可以享受以下權(quán)益:

  • 創(chuàng)作內(nèi)容快速變現(xiàn)
  • 行業(yè)影響力擴(kuò)散
  • 作品版權(quán)保護(hù)
  • 300W+ 專業(yè)用戶
  • 1.5W+ 優(yōu)質(zhì)創(chuàng)作者
  • 5000+ 長(zhǎng)期合作伙伴
立即加入
  • 正文
    • 4.1  數(shù)據(jù)處理指令的尋址方式
  • 相關(guān)推薦
  • 電子產(chǎn)業(yè)圖譜
申請(qǐng)入駐 產(chǎn)業(yè)圖譜

ARM指令尋址方式之: 數(shù)據(jù)處理指令的尋址方式

2013/09/13
1
閱讀需 29 分鐘
加入交流群
掃碼加入
獲取工程師必備禮包
參與熱點(diǎn)資訊討論

?

4.1? 數(shù)據(jù)處理指令的尋址方式

4.1.1? 數(shù)據(jù)處理指令的尋址方式概要

數(shù)據(jù)處理指令的基本語法格式如下。

<opcode> {<cond>} {S} <Rd>,<Rn>,<shifter_operand>

其中<shifter_operand>有下面11種形式,如表4.1所示。

表4.1??????? <shifter_operand>的尋址方式

語??? 法

尋 址 方 式

1

#<immediate>

立即數(shù)尋址

2

<Rm>

寄存器尋址

3

<Rm>, LSL? #<shift_imm>

立即數(shù)邏輯左移

4

<Rm>, LSL? <Rs>

寄存器邏輯左移

5

<Rm>, LSR? #<shift_imm>

立即數(shù)邏輯右移

6

<Rm>, LSR? <Rs>

寄存器邏輯右移

7

<Rm>, ASR? #<shift_imm>

立即數(shù)算術(shù)右移

8

<Rm>, ASR? <Rs>

寄存器算術(shù)右移

9

<Rm>, ROR? #<shift_imm>

立即數(shù)循環(huán)右移

10

<Rm>, ROR? <Rs>

寄存器循環(huán)右移

11

<Rm>, RRX

寄存器擴(kuò)展循環(huán)右移

數(shù)據(jù)處理指令的尋址方式根據(jù)<shifter_operand>的不同,相應(yīng)的分為11種。

4.1.2? 指令解碼

圖4.1顯示了數(shù)據(jù)處理指令不同尋址方式下的解碼格式。

圖4.1? 數(shù)據(jù)操作指令編碼格式

編碼格式中各域含義如下。

·? <opcode>:確定具體指令。

·? S:標(biāo)識(shí)指令是否影響程序狀態(tài)寄存器CPSR條件標(biāo)志。

·? Rd:指令操作的目的寄存器。

·? Rn:指令第一源操作數(shù)。

·? bit[11∶0]:移位操作,詳見本章移位操作一節(jié)。

·? bit[25]:被用來區(qū)分是立即數(shù)移位操作還是寄存器移位操作。

如果指令編碼出現(xiàn)下面情況:bit[25] = 0并且bit[4] = 1并且bit[7] = 1,則指令并非數(shù)據(jù)處理指令,它可能是Load/Store指令或算術(shù)指令。

4.1.3? 移位操作

數(shù)據(jù)處理指令是在算術(shù)邏輯單元ALU中完成。ARM處理器一個(gè)顯著特征就是可以在操作數(shù)進(jìn)入ALU之前,對(duì)操作數(shù)進(jìn)行指定位數(shù)的左移或右移操作。這種功能明顯增強(qiáng)了數(shù)據(jù)處理操作的靈活性。

移位操作可能產(chǎn)生進(jìn)位,更新程序狀態(tài)寄存器CPSR的進(jìn)位標(biāo)志C。移位操作有下面3種基本方式。

1.立即數(shù)方式

沒有任何一條ARM指令可以包含一個(gè)32位的立即數(shù),數(shù)據(jù)處理指令編碼格式中,第二個(gè)操作數(shù)有12位。指令的編碼格式如圖4.1所示。

指令中的立即數(shù)是由一個(gè)8 bit的常數(shù)移動(dòng)4 bit偶數(shù)位(0,2,4,…,26,28,30)得到的。所以,每一條指令都包含一個(gè)8 bit的常數(shù)X和移位值Y,得到的立即數(shù)=X循環(huán)右移(2×Y)。

注意

8位立即數(shù)一定要移偶數(shù)位。

下面列舉了一些有效的立即數(shù)。

0xFF、0x104、0xFF0、0x FF00、0x FF000、0x FF000000、0x F000000F

下面是一些無效的立即數(shù)。

0x101、0x102、0x FF1、0x FF04、0x FF003、0x FFFFFFFF、0x F000001F

下面是一些應(yīng)用立即數(shù)的指令。

MOV? r0,#0???????????????? ;送0到r0

ADD? r3,r3,#1????????????? ;r3的值加1

CMP? r7,#1000?????????????? ;r7的值和1000比較

BIC? r9,r8,#0x FF00???????? ;將r8中8~15位清零,結(jié)果保存在r9中

?

2.寄存器方式

寄存器的值可以被直接用于數(shù)據(jù)操作指令,如:

MOV? r2,r0????????????????? ;r0的值送r2

ADD? r4,r3,r2?????????????? ;r2加r3,結(jié)果送r4

CMP? r7,r8????????????????? ;比較r7和r8的值

3.寄存器移位方式

寄存器的值在被送到ALU之前,可以事先經(jīng)過桶形移位寄存器的處理。預(yù)處理和移位發(fā)生在同一周期內(nèi),所以有效的使用移位寄存器,可以增加代碼的執(zhí)行效率。

具體的移位(或者循環(huán)移位)方式有下面幾種。

·? ASR:算術(shù)右移。

·? LSL:邏輯左移。

·? LSR:邏輯右移。

·? ROR:循環(huán)右移。

·? RRX:擴(kuò)展的循環(huán)右移。

以上5種移位方式,移位值均可以由立即數(shù)或寄存器指定。下面是一些在指令中使用了移位操作的例子。

ADD? r2,r0,r1,LSR? #5

MOV? r1,r0,LSL? #2

RSB? r9,r5,r5,LSL? #1

SUB? r1,r2,r0,LSR #4

MOV? r2,r4,ROR? r0

4.1.4? 尋址方式分類詳解

數(shù)據(jù)處理指令的尋址方式根據(jù)<shifter_operand>的不同,相應(yīng)的分為11種。詳見表4.1。下面對(duì)各類尋址方式進(jìn)行詳細(xì)說明。

1.#<immediate>

(1)編碼格式

指令的編碼格式如圖4.2所示。

圖4.2? 數(shù)據(jù)處理指令——立即數(shù)尋址編碼格式

立即數(shù)尋址為數(shù)據(jù)處理指令提供了一個(gè)可直接操作的立即數(shù)。立即數(shù)的生成方法見前面章節(jié)介紹。如果移位值為0,則移位進(jìn)位值為程序狀態(tài)寄存器CPSR的C標(biāo)志位;否則,為32-bit立即數(shù)的bit[31]。

(2)操作偽代碼

Shifter_operand = immed_8 Rotate_Right (rotate_imm*2)

if? rotate_imm == 0 then

????? shifter_carry_out = C flag

else? /* rotate_imm != 0*/

????? shifter_carry_out = shifter_operand[31]

(3)說明

① 并不是所有的32-bit立即數(shù)都是可以使用的合法立即數(shù)。只有那些通過將一個(gè)8-bit的立即數(shù)循環(huán)右移偶數(shù)位可以得到的立即數(shù)才可以在指令中使用。

② 有些立即數(shù)可以通過不止一種方法得到。由于立即數(shù)的構(gòu)造方法中移位包含了循環(huán)操作,而循環(huán)移位操作會(huì)影響CPSR的條件標(biāo)志位C。因此,同一個(gè)合法的立即數(shù)由于采用了不同的編碼方式,將使這些指令的執(zhí)行產(chǎn)生不同的結(jié)果,這是不能允許的。ARM匯編器按照下面的規(guī)則來生成立即數(shù)的編碼。

·? 當(dāng)立即數(shù)數(shù)值在0和0xFF范圍時(shí),令immed_8=<immediate>,immed_4=0。

·? 其他情況下,匯編編譯器選擇使用immed_4數(shù)值最小的編碼方式。

③? 為了更精確地控制立即數(shù)的生成,可以使用下面的語法格式控制立即數(shù)的生成。

#<immed_8>,<rotate_amout>

其中,<rotate_amout> = 2*rotate_imm

(4)舉例

SUBS? r0,r0,#1????????????????????? ;寄存器r0中的數(shù)值減1,結(jié)果保存到r0

MOV? r0,#0xff00???? ; 0xff00 → r0????? ;將立即數(shù)0xff00放入r0保存

?

2.<Rm>

(1)編碼格式

指令的編碼格式如圖4.3所示。

圖4.3? 數(shù)據(jù)處理指令——寄存器尋址編碼格式

指令的操作數(shù)即為寄存器中的數(shù)值。移位寄存器的進(jìn)位為程序狀態(tài)寄存器CPSR的C標(biāo)志位。

指令的語法格式為:<opcode> {<cond>} {S} <Rd>,<Rn>,<Rm>

(2)操作偽代碼

Shifter_operand = Rm

Shifter_carry_out = C Flag

(3)說明

① 從指令的解碼格式來看,寄存器尋址方式和使用立即數(shù)邏輯左移尋址解碼格式是相同的,只是其移位數(shù)為0。

② 如果指令中的Rm或Rn指定為程序計(jì)數(shù)器r15,則操作數(shù)的值為當(dāng)前指令地址加8。

(4)舉例

MOV? r1,r2??? ; r2 → r1

SUB? r0,r1,r2?? ; r1 – r2 → r0

3.<Rm>, LSL? #<shift_imm>

(1)編碼格式

指令的編碼格式如圖4.4所示。

圖4.4? 數(shù)據(jù)處理指令——立即數(shù)邏輯左移尋址編碼格式

指令的操作數(shù)為寄存器Rm的數(shù)值邏輯左移shift_imm位。左移的范圍在0到31之間。左移移出的位用0補(bǔ)齊。進(jìn)位標(biāo)志位是最后移出的位(如果移位數(shù)為0,則為C標(biāo)志位)。

指令的語法格式為:<opcode> {<cond>} {S} <Rd>,<Rn>,<Rm>,LSL #<shift_imm>,其中:

·? <Rm>為進(jìn)行邏輯左移操作的寄存器;

·? LSL為邏輯左移操作標(biāo)識(shí);

·? <shift_imm>為邏輯左移位數(shù),范圍為0~31。

(2)操作偽代碼

if? shift_imm == 0 then /*執(zhí)行寄存器操作*/

????? shifter_operand = Rm

????? shifter_carry_out = C flag

else? /*移位寄存器大于零*/

????? shifter_operand = Rm logical_shift_left shift_imm

????? shifter_carry_out = Rm[32 – shift_imm]

(3)說明

① 如果移位立即數(shù)<shift_imm> =0,則該尋址方式為立即數(shù)直接尋址。

② 如果指令中的Rm或Rn指定為程序計(jì)數(shù)器r15,則操作數(shù)的值為當(dāng)前指令地址加8。

(4)舉例

SUB r0,r1,r2,LSL #10??????? ;r1的值減去r2的值左移10bit,結(jié)果放到r0寄存器

MOV r0,r2,LSL #3??????????? ;r2的值左移3bit,結(jié)果放入r0,即r0 = r2×8

?

4.<Rm>, LSL? <Rs>

(1)編碼格式

指令的編碼格式如圖4.5所示。

圖4.5? 數(shù)據(jù)處理指令——寄存器邏輯左移尋址編碼格式

?

寄存器邏輯左移十分適合寄存器值乘2的倍數(shù)操作。

這個(gè)指令是將寄存器Rm的值邏輯左移一定的位數(shù)。位移的位數(shù)由Rs的最低8位bit[7∶0]決定。Rm移出的位用0補(bǔ)齊。進(jìn)位值是移位寄存器最后移出的位,如果移位數(shù)大于0,則進(jìn)位值為0。

(2)語法格式

<opcode> {<cond>} {S} <Rd>,<Rn>,<Rm>,LSL? <Rs>

其中:

·? <Rm>為指令被移位的寄存器;

·? LSL為邏輯左移操作標(biāo)識(shí);

·? <Rs>為包含邏輯左移位數(shù)的寄存器。

(3)操作偽代碼

if? Rs[7:0] = = 0 then

???? shifter_operand = Rm

???? shifter_carry_out = C flag

else? if? Rs[7:0] < 32 then

???? shifter_operand = Rm? logical_shift_left? Rs[7:0]

???? shifter_carry_out = Rm[32 – Rs[7:0]]

else? if? Rs[7:0] = = 32 then

???? shifter_operand = 0

???? shifter_carry_out = Rm[0]

else? /*Rs的后8位大于零*/

???? shifter_operand = 0

???? shifter_carry_out = 0

(4)說明

如果程序計(jì)數(shù)器r15被用作Rd,Rm,Rn或Rs中的任意一個(gè),則指令的執(zhí)行結(jié)果不可預(yù)知。

(5)舉例

MOV? r0,r2,LSL r3????????? ;r2的值左移r3位,結(jié)果放入r0

ANDS r1,r1,r2,LSL r3????? ;r2的值左移r3位,然后和r1相與,結(jié)果放入r1

5.<Rm>, LSR #<shift_imm>

(1)編碼格式

指令的編碼格式如圖4.6所示。

圖4.6? 數(shù)據(jù)處理指令——立即數(shù)邏輯右移尋址編碼格式

指令的操作數(shù)為寄存器Rm的值右移<shift_imm>位,相當(dāng)于Rm的值除以一個(gè)2的倍數(shù)。<shift_imm>值的范圍為0~31,移位后空出的位添0。循環(huán)器進(jìn)位值為Rm最后移出的位。

(2)語法格式

<opcode> {<cond>} {S} <Rd>,<Rn>,<Rm>,LSR #<shift_imm>

其中:

·? <Rm>為被移位的寄存器;

·? LSR為邏輯右移操作標(biāo)識(shí);

·? <shift_imm>為邏輯右移位數(shù),范圍為0~31。

(3)操作偽代碼

if? shift_imm == 0 then /*執(zhí)行寄存器操作*/

????? shifter_operand = 0

????? shifter_carry_out = Rm[31]

else? /*移位立即數(shù)大于零*/

????? shifter_operand = Rm logical_shift_Right shift_imm

????? shifter_carry_out = Rm[shift_imm - 1]

(4)說明

① shift_imm的取值范圍為0~31,當(dāng)shift_imm=0時(shí),移位位數(shù)為32,所以移位位數(shù)范圍為1~32位。

② 如果指令中的Rm或Rn指定為程序計(jì)數(shù)器r15,則操作數(shù)的值為當(dāng)前指令地址加8。

?

6.<Rm>, LSR? <Rs>

(1)編碼格式

指令的編碼格式如圖4.7所示。

圖4.7? 數(shù)據(jù)處理指令——寄存器邏輯右移尋址編碼格式

此操作將寄存器Rm的數(shù)值邏輯右移一定的位數(shù)。移位的位數(shù)由Rs的最低8位bit[7∶0]決定。移出的位由0補(bǔ)齊。當(dāng)Rs[7∶0]大于0而小于32時(shí),進(jìn)位標(biāo)志C由最后移出的位決定,當(dāng)Rs[7∶0]大于32時(shí),進(jìn)位標(biāo)志位為0,當(dāng)Rs[7∶0]等于0時(shí),進(jìn)位標(biāo)志不變。

(2)語法格式

<opcode> {<cond>} {S} <Rd>,<Rn>,<Rm>,LSR? <Rs>

其中:

·? <Rm>為指令被移位的寄存器;

·? LSR為邏輯右移操作標(biāo)識(shí);

·? <Rs>為包含邏輯右移位數(shù)的寄存器。

(3)操作偽代碼

if? Rs[7:0] = = 0 then

???? shifter_operand = Rm

???? shifter_carry_out = C flag

else? if? Rs[7:0] < 32 then

???? shifter_operand = Rm? logical_shift_Right? Rs[7:0]

???? shifter_carry_out = Rm[Rs[7:0] - 1]

else? if? Rs[7:0] = = 32 then

???? shifter_operand = 0

???? shifter_carry_out = Rm[31]

else? /*Rs的后8位大于零*/

???? shifter_operand = 0

???? shifter_carry_out = 0

(4)說明

如果程序計(jì)數(shù)器r15被用作Rd、Rm、Rn或Rs中的任意一個(gè),則指令的執(zhí)行結(jié)果不可預(yù)知。

7.<Rm>, ASR #<shift_imm>

(1)編碼格式

指令的編碼格式如圖4.8所示。

圖4.8? 數(shù)據(jù)處理指令——立即數(shù)算術(shù)右移尋址編碼格式

指令的操作數(shù)為寄存器Rm的數(shù)值邏輯右移<shift_imm>位。<shift_imm>的值范圍為0~31,當(dāng)<shift_imm>等于0時(shí),移位位數(shù)為32,所以移位位數(shù)范圍為1~32位。進(jìn)位移位操作后,空出的位添Rm的最高位Rm[31]。進(jìn)位標(biāo)志為Rm最后被移出的數(shù)值。

(2)語法格式

<opcode> {<cond>} {S} <Rd>,<Rn>,<Rm>,ASR #<shift_imm>

其中:

·? <Rm>為被移位的寄存器;

·? ASR為算術(shù)右移操作標(biāo)識(shí);

·? <shift_imm>為算術(shù)右移位數(shù),范圍為1~32,當(dāng)shift_imm等于0時(shí)移位位數(shù)為32。

(3)操作偽代碼

if? shift_imm == 0 then /*執(zhí)行寄存器操作*/

???? if? Rm[31] = = 0 then

????????? shifter_operand = 0

????????? shifter_carry_out = Rm[31]

???? else /*Rm[31] = = 1*/

????????? shifter_operand = 0xffffffff

????????? shifter_carry_out = Rm[31]

else? /*shift_imm > 0*/

???? shifter_operand = Rm Arithmetic_shift_Right <shift_imm>

???? shifter_carry_out = Rm[shift_imm - 1]

(4)說明

① 如果指令中的Rm或Rn指定為程序計(jì)數(shù)器r15,則操作數(shù)的值為當(dāng)前指令地址加8。

?

8.<Rm>, ASR? <Rs>

(1)編碼格式

指令的編碼格式如圖4.9所示。

圖4.9? 數(shù)據(jù)處理指令——寄存器算術(shù)右移尋址編碼格式

此操作將寄存器Rm的數(shù)值算術(shù)右移一定的位數(shù)。移位后空缺的位由Rm的符號(hào)位(Rm[31])填充。位移的位數(shù)由Rs的最低8位bit[7∶0]決定。當(dāng)Rs[7∶0]大于零而小于32時(shí),指令的操作數(shù)為寄存器Rm的數(shù)值算術(shù)右移Rs[7∶0]位,進(jìn)位標(biāo)志C為Rm最后被移出的位。

(2)語法格式

<opcode> {<cond>} {S} <Rd>,<Rn>,<Rm>,ASR? <Rs>

其中:

·? <Rm>為指令被移位的寄存器;

·? ASR為算術(shù)右移操作標(biāo)識(shí);

·? <Rs>為包含算術(shù)右移位數(shù)的寄存器。

(3)操作偽代碼

if? Rs[7:0] = = 0 then

???? shifter_operand = Rm

???? shifter_carry_out = C flag

else? if? Rs[7:0] < 32 then

???? shifter_operand = Rm? Arithmeticl_shift_Right? Rs[7:0]

???? shifter_carry_out = Rm[Rs[7:0] - 1]

else?

???? if? Rm[31] = =0 then

????????? shifter_operand = 0

????????? shifter_carry_out = Rm[31]

??? else?

????????? shifter_operand = 0xffffffff

????????? shifter_carry_out = Rm[31]

(4)說明

如果程序計(jì)數(shù)器r15被用作Rd、Rm、Rn或Rs中的任意一個(gè),則指令的執(zhí)行結(jié)果不可預(yù)知。

9.<Rm>, ROR #<shift_imm>

(1)編碼格式

指令的編碼格式如圖4.10所示。

圖4.10? 數(shù)據(jù)處理指令——立即數(shù)循環(huán)右移尋址編碼格式

指令的操作數(shù)由寄存器Rm的數(shù)值循環(huán)右移一定的位數(shù)得到。移位的位數(shù)由Rs的最低8位bits[7∶0]決定。當(dāng)Rs[7∶0]=0時(shí),指令的操作數(shù)為寄存器Rm的值,循環(huán)器的進(jìn)位值為CPSR中的C條件標(biāo)志位;否則,循環(huán)器的進(jìn)位值為Rm最后被移出的位。

(2)語法格式

<opcode> {<cond>} {S} <Rd>,<Rn>,<Rm>,ROR #<shift_imm>

其中:

·? <Rm>為被移位的寄存器;

·? ROR為循環(huán)右移操作標(biāo)識(shí);

·? <shift_imm>為循環(huán)右移位數(shù),范圍為1~31,當(dāng)shift_imm等于0時(shí)執(zhí)行RRX操作。

(3)操作偽代碼

if? shift_imm == 0 then /*執(zhí)行寄存器操作*/

???? 執(zhí)行RRX操作

else

???? shifter_operand = Rm Rotate_Right shift_imm

???? shifter_carry_out = Rm[shift_imm - 1]

(4)說明

如果指令中的Rm或Rn指定為程序計(jì)數(shù)器r15,則操作數(shù)的值為當(dāng)前指令地址加8。

?

10.<Rm>, ROR? <Rs>

(1)編碼格式

指令的編碼格式如圖4.11所示。

圖4.11? 數(shù)據(jù)處理指令——寄存器循環(huán)右移尋址編碼格式

指令的操作數(shù)由寄存器Rm的數(shù)值循環(huán)右移一定的位數(shù)。移位的位數(shù)由Rs的最低8位bits[7∶0]決定。當(dāng)Rs[7∶0]=0時(shí),指令的操作數(shù)為寄存器Rm的值,循環(huán)器的進(jìn)位值為CPSR中的C條件標(biāo)志位;否則,循環(huán)器的進(jìn)位值為Rm最后被移出的位。

(2)語法格式

<opcode> {<cond>} {S} <Rd>,<Rn>,<Rm>,ROR? <Rs>

其中:

·? <Rm>為指令被移位的寄存器;

·? ROR為循環(huán)右移操作標(biāo)識(shí);

·? <Rs>為包含循環(huán)右移位數(shù)的寄存器。

(3)操作偽代碼

if? Rs[7:0] = = 0 then

???? shifter_operand = Rm

???? shifter_carry_out = C flag

else? if? Rs[4:0] == 0 then

???? shifter_operand = Rm

???? shifter_carry_out = Rm[31]

else?

???? shifter_operand = Rm Rotate_Right Rs[4:0]

???? shifter_carry_out = Rm[Rs[4:0] - 1]

(4)說明

如果程序計(jì)數(shù)器r15被用作Rd、Rm、Rn或Rs中的任意一個(gè),則指令的執(zhí)行結(jié)果不可預(yù)知。

11.<Rm>, RRX

(1)編碼格式

指令的編碼格式如圖4.12所示。

圖4.12? 數(shù)據(jù)處理指令——擴(kuò)展右移尋址編碼格式

指令的操作數(shù)為寄存器Rm的數(shù)值右移一位,并用CPSR中的C條件標(biāo)志位填補(bǔ)空出的位。CPSR中的C條件標(biāo)志位則用移出的位代替。

(2)語法格式

<opcode> {<cond>} {S} <Rd>,<Rn>,<Rm>,RRX

其中:

·? <Rm>為指令被移位的寄存器;

·? RRX為擴(kuò)展的循環(huán)右移操作。

(3)操作偽代碼

shifter_operand = (C flag logical_shift_left 31) OR (Rm logical_shift_Right 1)

shifter_carry_out = Rm[0]

(4)說明

① 此種尋址方式的編碼形式和“ROR #0”一致。

② 如果程序計(jì)數(shù)器r15被用作Rd、Rm、Rn或Rs中的任意一個(gè),則指令的執(zhí)行結(jié)果不可預(yù)知。

③ 可以實(shí)現(xiàn)ADC指令的功能。

Arm

Arm

ARM公司是一家知識(shí)產(chǎn)權(quán)(IP)供應(yīng)商,主要為國(guó)際上其他的電子公司提供高性能RISC處理器、外設(shè)和系統(tǒng)芯片技術(shù)授權(quán)。目前,ARM公司的處理器內(nèi)核已經(jīng)成為便攜通訊、手持計(jì)算設(shè)備、多媒體數(shù)字消費(fèi)品等方案的RISC標(biāo)準(zhǔn)。公司1990年11月由Acorn、Apple和VLSI合并而成。

ARM公司是一家知識(shí)產(chǎn)權(quán)(IP)供應(yīng)商,主要為國(guó)際上其他的電子公司提供高性能RISC處理器、外設(shè)和系統(tǒng)芯片技術(shù)授權(quán)。目前,ARM公司的處理器內(nèi)核已經(jīng)成為便攜通訊、手持計(jì)算設(shè)備、多媒體數(shù)字消費(fèi)品等方案的RISC標(biāo)準(zhǔn)。公司1990年11月由Acorn、Apple和VLSI合并而成。收起

查看更多

相關(guān)推薦

電子產(chǎn)業(yè)圖譜

華清遠(yuǎn)見(www.farsight.com.cn)是國(guó)內(nèi)領(lǐng)先嵌入師培訓(xùn)機(jī)構(gòu),2004年注冊(cè)于中國(guó)北京海淀高科技園區(qū),除北京總部外,上海、深圳、成都、南京、武漢、西安、廣州均有直營(yíng)分公司。華清遠(yuǎn)見除提供嵌入式相關(guān)的長(zhǎng)期就業(yè)培訓(xùn)、短期高端培訓(xùn)、師資培訓(xùn)及企業(yè)員工內(nèi)訓(xùn)等業(yè)務(wù)外,其下屬研發(fā)中心還負(fù)責(zé)嵌入式、Android及物聯(lián)網(wǎng)方向的教學(xué)實(shí)驗(yàn)平臺(tái)的研發(fā)及培訓(xùn)教材的出版,截止目前為止已公開出版70余本嵌入式/移動(dòng)開發(fā)/物聯(lián)網(wǎng)相關(guān)圖書。企業(yè)理念:專業(yè)始于專注 卓識(shí)源于遠(yuǎn)見。企業(yè)價(jià)值觀:做良心教育、做專業(yè)教育,更要做受人尊敬的職業(yè)教育。