加入星計(jì)劃,您可以享受以下權(quán)益:
卡爾曼濾波(Kalman filtering)是一種利用線(xiàn)性系統(tǒng)狀態(tài)方程,通過(guò)系統(tǒng)輸入輸出觀(guān)測(cè)數(shù)據(jù),對(duì)系統(tǒng)狀態(tài)進(jìn)行最優(yōu)估計(jì)的算法。由于觀(guān)測(cè)數(shù)據(jù)中包括系統(tǒng)中的噪聲和干擾的影響,所以最優(yōu)估計(jì)也可看作是濾波過(guò)程。數(shù)據(jù)濾波是去除噪聲還原真實(shí)數(shù)據(jù)的一種數(shù)據(jù)處理技術(shù),Kalman濾波在測(cè)量方差已知的情況下能夠從一系列存在測(cè)量噪聲的數(shù)據(jù)中,估計(jì)動(dòng)態(tài)系統(tǒng)的狀態(tài)。由于它便于計(jì)算機(jī)編程實(shí)現(xiàn),并能夠?qū)ΜF(xiàn)場(chǎng)采集的數(shù)據(jù)進(jìn)行實(shí)時(shí)的更新和處理,Kalman濾波是目前應(yīng)用最為廣泛的濾波方法,在通信,導(dǎo)航,制導(dǎo)與控制等多領(lǐng)域得到了較好的應(yīng)用。
卡爾曼濾波(Kalman filtering)是一種利用線(xiàn)性系統(tǒng)狀態(tài)方程,通過(guò)系統(tǒng)輸入輸出觀(guān)測(cè)數(shù)據(jù),對(duì)系統(tǒng)狀態(tài)進(jìn)行最優(yōu)估計(jì)的算法。由于觀(guān)測(cè)數(shù)據(jù)中包括系統(tǒng)中的噪聲和干擾的影響,所以最優(yōu)估計(jì)也可看作是濾波過(guò)程。數(shù)據(jù)濾波是去除噪聲還原真實(shí)數(shù)據(jù)的一種數(shù)據(jù)處理技術(shù),Kalman濾波在測(cè)量方差已知的情況下能夠從一系列存在測(cè)量噪聲的數(shù)據(jù)中,估計(jì)動(dòng)態(tài)系統(tǒng)的狀態(tài)。由于它便于計(jì)算機(jī)編程實(shí)現(xiàn),并能夠?qū)ΜF(xiàn)場(chǎng)采集的數(shù)據(jù)進(jìn)行實(shí)時(shí)的更新和處理,Kalman濾波是目前應(yīng)用最為廣泛的濾波方法,在通信,導(dǎo)航,制導(dǎo)與控制等多領(lǐng)域得到了較好的應(yīng)用。收起
查看更多