加入星計劃,您可以享受以下權益:

  • 創(chuàng)作內(nèi)容快速變現(xiàn)
  • 行業(yè)影響力擴散
  • 作品版權保護
  • 300W+ 專業(yè)用戶
  • 1.5W+ 優(yōu)質(zhì)創(chuàng)作者
  • 5000+ 長期合作伙伴
立即加入
  • 正文
  • 相關推薦
  • 電子產(chǎn)業(yè)圖譜
申請入駐 產(chǎn)業(yè)圖譜

克服碳化硅制造挑戰(zhàn),助力未來電力電子應用

10/24 07:30
1718
閱讀需 9 分鐘
加入交流群
掃碼加入
獲取工程師必備禮包
參與熱點資訊討論

作者:Catherine De Keukeleire,可靠性與質(zhì)量保證總監(jiān),寬禁帶,安森美

幾十年來,硅(Si)一直是半導體行業(yè)的主要材料——從微處理器到分立功率器件,無處不在。然而,隨著汽車和可再生能源等領域對現(xiàn)代電力需求應用的發(fā)展,硅的局限性變得越來越明顯。

隨著行業(yè)不斷探索解決方案,寬禁帶(WBG)材料,包括碳化硅SiC)和氮化鎵GaN),被視為解決之道。禁帶寬度描述了價帶頂部和導帶底部之間的能量差。硅的禁帶寬度相對較窄,為1.1電子伏特(eV),而SiC和GaN的禁帶寬度分別為3.3eV和3.4eV。

圖 1 - 寬禁帶材料的物理特性(資料來源:安森美)

這些特性意味著寬禁帶材料的特性更像絕緣體,能夠在更高的電壓、頻率和溫度下工作。因此,它們非常適合用于電動汽車(EV)和可再生能源等領域的功率轉換應用。

碳化硅(SiC)

碳化硅(SiC)并非新鮮事物,作為研磨材料已有超過一個世紀的生產(chǎn)歷史。然而,由于具有適合高壓、大功率應用的誘人特性,SiC正逐漸嶄露頭角。SiC的物理特性,如高熱導率、高飽和電子漂移速度和高擊穿電場,使得SiC設計相比硅MOSFETIGBT具有極低的損耗、更快的開關速度和更小的幾何尺寸。

許多業(yè)內(nèi)人士將SiC視為具有競爭優(yōu)勢的原材料,因為它能夠在減小尺寸、重量和成本的同時提高效率。由于SiC系統(tǒng)的工作頻率更高,無源器件的體積更小,損耗更低,因此所需的散熱措施也更少。最終,這將實現(xiàn)許多現(xiàn)代應用所需的更高功率密度。

圖 2 - SiC 在許多應用中都具有優(yōu)勢(來源:安森美)

在選擇材料的同時,在SiC功率器件中采用新的裸片連接技術有助于消除器件中的熱量。燒結等技術可在裸片和襯底之間形成牢固的結合,并確??煽康幕ミB性。因此,它可以提高熱傳導效率,改善散熱性能。

SiC通常用于高壓應用(>650V),但在 1200V 及更高電壓下,碳化硅開始發(fā)揮顯著作用,成為太陽能逆變器和電動汽車充電的最佳解決方案。它也是固態(tài)變壓器的關鍵推動因素,在固態(tài)變壓器中,半導體將取代磁性元件。

制造挑戰(zhàn)

SiC的制造并不容易,首先,顆粒的純度必須極高,并且SiC晶錠需要高度的一致性。由于SiC材料永遠不會變成液態(tài),因此晶體不能從熔融狀態(tài)中生長出來,而是需要在氣相技術中通過仔細控制的壓力來實現(xiàn),這種技術稱為升華法。為了實現(xiàn)這一點,SiC粉末被放置在熔爐中并加熱到超過2200°C,使其升華并在籽晶上結晶。然而,即便如此,生長速度也非常緩慢,每小時最多只能生長0.5毫米。

SiC的極端硬度使得即使使用金剛石鋸切割也十分困難,這使得與硅相比,制造晶圓更具挑戰(zhàn)性。雖然可以使用其他技術,但這些技術可能會在晶體中產(chǎn)生缺陷。

由于SiC是一種非常容易產(chǎn)生缺陷的材料,且摻雜工藝具有挑戰(zhàn)性,生產(chǎn)出缺陷少的大尺寸晶圓并不容易。盡管如此,安森美(onsemi)公司現(xiàn)在已可以常規(guī)生產(chǎn)8英寸的襯底。

圖 3 - 碳化硅制造工藝(來源:安森美)

支持研究

安森美意識到學術界在半導體技術發(fā)展中的重要性。就SiC而言,目前正在以下領域開展研究:

  • 對宇宙射線的抗擾性
  • 柵極氧化物的固有壽命建模
  • 碳化硅/二氧化硅界面特征描述和壽命建模
  • 外來物質(zhì)(篩選)
  • 外延和襯底缺陷
  • 二極管退化
  • 高壓阻斷可靠性 (HTRB)
  • 有關邊緣終止、雪崩穩(wěn)健性和短路的特定性能指標
  • 高 dv/dt 耐久性設計
  • 浪涌電流

此外, 安森美還承諾出資 800 萬美元,圍繞賓夕法尼亞州立大學(PSU)的安森美碳化硅晶體中心(SiC3)開展戰(zhàn)略合作。他們還與歐洲其他至少六家教育機構合作,進一步推動該技術的發(fā)展。

安森美制造的優(yōu)勢

安森美的獨特之處在于,該公司為SiC器件提供了完全集成的供應鏈,可以全面控制從晶錠到客戶的所有流程環(huán)節(jié)和相關質(zhì)量。

該流程從新罕布什爾州開始,首先培育單晶碳化硅材料,然后在其上添加一層薄的外延層。接下來,完成多個器件處理步驟和封裝,以生產(chǎn)出最終產(chǎn)品。

安森美生產(chǎn)基地的端到端能力有助于進行最全面的測試并支持根本原因分析。其目標是生產(chǎn)零缺陷的高可靠性產(chǎn)品。

圖 4 - 終極質(zhì)量 - 零缺陷(來源:安森美)

通過對每個步驟的可見性和控制,可以相對輕松地擴大產(chǎn)能,以滿足不斷增長的需求。此外,還可以對流程進行優(yōu)化,以最大限度地提高產(chǎn)量和控制成本。事實上,麥肯錫公司也認可垂直整合供應鏈的好處,他們寫道:"SiC 晶圓和器件生產(chǎn)的垂直整合可以將產(chǎn)量提高五到十個百分點。

成功的五個步驟

在應對碳化硅的特定挑戰(zhàn)時,安森美采用了五步方法來解決襯底和外延缺陷水平、體二極管退化、高壓阻斷期間的可靠性以及與應用相關的性能等問題。

圖 5 - 應對 SiC 挑戰(zhàn)的五步方法(來源:安森美)

柵極氧化物完整性 (GOI) 至關重要,也是采用五步法的一個領域。

控制 - 采用控制計劃、統(tǒng)計過程控制和潛在失效模式與后果分析 (FMEA) 等工具,收集數(shù)據(jù)并用于流程改進。

改進 - 襯底或外延層的缺陷以及金屬污染物和顆粒都會影響 GOI。持續(xù)改進可減少此類缺陷的發(fā)生。

測試和篩選 - 視覺和電學篩選都用于識別任何有缺陷的裸片。對襯底進行掃描,并在晶圓加工過程中繼續(xù)掃描,以了解每個階段的缺陷。在晶圓級進行電氣測試,包括老化測試和晶圓分類。

特性描述 – 使用電荷擊穿(QBD)測試來衡量GOI的質(zhì)量,因為它能檢測到更細微的細節(jié)。測試表明,SiC的內(nèi)在 QBD 性能是硅的 50 倍。在生產(chǎn)中進行樣本QBD測試,如果晶圓不符合預定的驗收標準,則會被剔除。

鑒定和提取模型 – 通過時間相關的介電層擊穿(Time?Dependent?Dielectric?Breakdown,TDDB)應力測試評估柵極氧化層的內(nèi)在性能。結合柵極偏壓和溫度對碳化硅MOSFET施加應力,并記錄失效時間。然后使用 Weibull 統(tǒng)計分布得出器件壽命。

安森美 SiC 的不同之處

安森美深知碳化硅在未來電力電子領域的關鍵作用,尤其是在汽車和可再生能源等領域的電力轉換應用。這推動了對產(chǎn)能和產(chǎn)品創(chuàng)新的投資,以確保 SiC 盡快充分發(fā)揮其潛力。

安森美作為一家垂直整合的供應商,整個生產(chǎn)過程都在我們的掌控之下,這是其他任何公司都無法比擬的。這不僅能控制成本,還能確保向汽車和工業(yè)制造商提供零缺陷的產(chǎn)品。

相關推薦

電子產(chǎn)業(yè)圖譜